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Abstract   

Time lapse (4D) seismic is widely deployed in offshore 
operations to monitor reservoir changes, especially those 
utilizing improved oil recovery methods including water 
flooding. But its value for well and reservoir management 
(WRM) is not fully realized due to the long cycle time 
required transferring the 4D seismic into reservoir 
property changes, such as water/gas saturation changes 
and pressure changes. To shorten the cycle time, we 
designed a machine learning based agile workflow to 
invert for reservoir property changes directly from a 
variety of 4D seismic attribute maps and reservoir static 
property maps. We use reservoir simulation, calibrated 
rock physics model and the real seismic data well tied 
wavelet to generate synthetic 4D seismic data and their 
attribute maps. As the reservoir property changes are 
related not only to the 4D attribute maps, but also to the 
reservoir static parameters, each training dataset is 
composed of multi-4D attributes and static parameters 
from reservoir simulation as input, and the reservoir 
property changes from the reservoir simulator as output. 
A shallow neural net (NNet) is applied to train on the 
synthetic datasets demonstrating satisfactory 
convergence within a few minutes, allowing prediction of 
property changes from the real 4D seismic attribute maps 
with seconds of time. 

This ML based agile workflow is applied to BC10 O-North 
field to predict water and gas saturation changes (dSw 
and dSg) simultaneously. The turnaround time can be 
reduced from weeks to days, allowing early engagements 
with reservoir engineers to enhance integration and 
removing a deterrent to the acquisition of frequent 4D 
surveys.  

Introduction 

When interpreting 4D seismic signals, people often have 
to face the trade-off between qualitative and quantitative 
approaches, e.g., normalized root mean square amplitude 
changes, NdRMS, or to apply inversion methods to 
quantify reservoir property changes by matching the 
seismic wiggles of baseline and monitor surveys. 
Qualitative interpretation of 4D attribute maps detects 
where changes have occurred based on observed effects 
and their direction (hardening or softening). However, the 
amount of change cannot be quantified. 4D inversion can 
quantify reservoir property changes and provide 

uncertainty estimates. However, it requires sophisticated 
inversion process. Consequently, the turnaround time can 
extend to weeks or months while the business impact 
fades. 
 

To fill the gap between qualitative interpretation of 4D 
attribute maps and 4D inversion, several ML and DL 
based workflows (Cao et al. 2017, Xue et al. 2019, Côrte 
et al. 2020) are used to predict the maps of reservoir 
property changes. The ideas are similar in a way that 
using machine-learning model trained from the synthetic 
data to replace the nonlinear physics models (rock and 
fluids models and calculation of seismic reflection 
coefficients). After a successful training, the non-linear 
inversion problem is then transferred to a machine 
learning based forward model, thus enable the prediction 
in a very quick time. Previous study from Xue et. al. 
(2018) using only one attribute (NdRMS or dRMS) to 
invert for dSw and dSg separately assuming there is no 
overlap between dSw and dSg. In this paper, we extend 
the workflow for a simultaneous inversion of dSw and dSg 
by adding multi-attributes from 4D seismic data.  

The non-uniqueness remains one of the biggest 
challenges for simultaneous inversion of reservoir 
property changes, i.e. softening signal may come from 
water saturation decrease, or from gas saturation 
increase or from pressure increase, or from a combination 
of these effects. Using reservoir properties populated 
from reservoir simulations as the training datasets can 
provide constrains to such non-uniqueness as the 
physical relationships between these properties are 
embedded and unrealistic scenarios are excluded. Adding 
a variety of 4D attributes as input further helps to reduce 
the degree of freedom. In the end, the predicted property 
changes together with their uncertainties will provide 
quantitative insights to support reservoir development and 
operation decisions. 

Method  

The workflow of multi-attributes seismic inversion for 
saturation changes uses ML approach with three steps: 1) 
generate the synthetic training datasets; 2) build, train 
and test the NNet; 3) predict the reservoir property 
changes on the real data. 

The first step is to generate the synthetic 4D seismic 
responses. Reservoir model simulated property changes, 
calibrated rock physics model and real seismic well tied 
wavelet are applied to generate the synthetic 4D seismic 
wiggles. Then, a variety of seismic attribute maps (i.e. 
listed in Table 1) were calculated within the gate of 
reservoir layer. Those synthetic 4D attribute maps 
together with the static properties (including net-to-gross, 
porosity and saturation baseline) and reservoir simulated 
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property changes compose the synthetic database for the 
next step. 

 

4D attributes Description 

dRMS Difference of root mean square 
amplitude between baseline and monitor 

SNADiff Absolute value of summation of negative 
amplitude of seismic difference  

SPADiff Absolute value of summation of positive 
amplitude of seismic difference 

dSNA Difference of summation of negative 
amplitude between baseline and monitor 

dSPA Difference of summation of positive 
amplitude between baseline and monitor 

Table 1: List of 4D attributes used and how they are calculated. 

The second step is to build, train and test the ML model 
on the synthetic datasets. The total synthetic datasets are 
split into two parts, one for training and the rest for 
testing.  Here we use a shallow NNet (with only two 
hidden layers) as our ML model, which already provided a 
satisfactory convergence in a very quick time. 

The last step is to use the trained NNet to predict the 
dSw and dSg simultaneously with the synthetic 4D 
seismic attribute maps replaced by the real 4D attribute 
maps. For the uncertainty analysis in a practical way, we 
repeat the workflow from step 1 to 3 multiple times, 
calculate the standard deviation of the predictions and 
compare with the mean average. 

Examples – BC10 O-North background 

The O-North field located within the BC10 license, 
northern Campos Basin – Brasil, is a large and very flat 
structure conformed by amalgamated channelized 
turbidites with high net-to-gross within the main channel 
body. This heavy oil field is produced by waterflood 
recovery using 12 long horizontal wells (8 producers and 
4 injectors); all wells with high productivity and injectivity. 
The initial reservoir pressure is close to bubble point. 
Given the small pressure range and the high viscosity of 
the oil, coning, cusping and fingering of water is observed 
in 4D seismic monitor surveys. Injectivity and productivity 
rates are optimized to manage the waterflood sweep, 
gas-oil-ratio and reservoir pressure, using 4D seismic 
data. Infill drilling opportunities are also defined using 4D 
seismic data. Given the importance of 4D for the 
development of this field, a permanent reservoir 
monitoring system was installed in 2013, known as LoFS: 
Life of Field Seismic, which consists of 4-components 
sensors deployed along Ocean Bottom Cables connected 
to the FPSO and provides the opportunity to acquire 
frequent reservoir monitoring surveys. The BC-10 Asset 
has acquired a baseline survey in 2013, and 5 monitor 
surveys, last one in January 2020, which was processed 
using the most recent 4D joint Kirchhoff LSM workflow 
yielding 3D and 4D partial angle stack volumes as well as 
pre-stack gathers. 

The team is working towards two key projects in O-North: 
(1) Waterflood Optimization, the first step towards the 
Integrated Ramp-Up Plan, and (2) Polymer Flooding 
injection pilot to increase water viscosity which would lead 
to stable oil displacement, effectively reducing fingering 
and increasing sweep efficiency (increase oil recovery 
and lower water cut). The understanding of vertical 
permeability and preferential flow paths of the reservoir 
will provide valuable knowledge for these two key 
projects. 

To understand the relation between the saturation vs. 
pressure effects in the reservoir the team relied on 
qualitative 4D seismic interpretation, as well as 
quantitative approach ML inversion, object of this study. 
4D AvA intercept and gradient analysis is also included to 
understand the behavior among the 4 injectors, and their 
correlation with the injectivity rates. The results will be 
integrated/included to the model via 4D QSRM 
(quantitative seismic reservoir modeling) in due time, 
once resources become available. 

Examples – BC10 O-North ML inversion results 

Following the first step of the workflow, we use reservoir 
simulation model, calibrated rock physics model and real 
seismic well tied wavelet to generate synthetic 4D seismic 
data and their 4D attribute maps (figure 1). Strong 
correlation is observed between 4D attribute maps and 
dSw and dSg maps: i.e. SNADiff focusing on the 
softening signal is primary dominated by gas saturation 
increase, thus has a similar pattern as the dSg, while 
SPADiff focusing on the hardening signal is strongly 
correlated with dSw. SNADiff and SPADiff may help for a 
joined inversion of dSw and dSg but the sign information 
is missed from these two attributes. Other 4D attributes in 
the table 1, such as dRMS and dSNA have the correct 
sign information, which will fill the drawback from SNADiff 
and SPADiff.  

In the second step, we built a two-hidden layer NNet 
with the input composed of the 4D attribute maps 
calculated from the step one and the maps of static 
properties from reservoir model, and the reservoir 
simulated dSw and dSg as output. The synthetic datasets 
were split equally. Half of them are used for training and 
the rest for testing. R2 score (the square of the correlation 
coefficient between the true outcomes and the predicted 
values) is commonly used for the regression accuracy 
assessment, normally ranges from 0 to 1 with 0 meaning 
no correlation and 1 meaning the exact same. In this test, 
we achieved a satisfactory prediction just in a few minutes 
of CPU time, with the R2 score of 0.85 for dSw and 0.94 
for dSg. The residuals between the predicted dSw & dSg 
and the ground truth (synthetic dSw & dSg) is shown in 
the figure 2. The average residuals for dSw is c.a 0.002 
with a standard deviation of 0.03 and for dSg is c.a. 
0.00001 with a standard deviation of 0.0008. We also 
noticed that the residuals are mostly located at the 
overlapping area where both dSw and dSg are present, 
i.e. near the center and southeastern producers (wells in 
black), where machine tends to have a little 
overestimated for dSg and underestimated for dSw. 

After the NNet was trained, the real 4D seismic attributes 
maps (figure 3) were substituted for the synthetic 4D 
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seismic attributes maps in the last step. To quantify the 
robustness of estimation, we repeated the workflow 20 
times and calculated the mean average of dSw & dSg 
maps and their standard deviation maps accordingly 
(figure 4). The standard deviation for dSw is below 0.08 
and for dSg is below 0.01. The uncertainty of dSw (figure 
4c) is larger along the injectors where the magnitude of 
dSw is larger too. The uncertainty of dSg (figure 4d) is 
larger around the producers where dSw and dSg may 
overlap. By comparing the average and standard 
deviation for each variable, we can locate where we have 
robust estimation and where we have large uncertainty. 
For example, the producer at the southwest corner 
(shown in black) has a relatively large standard deviation 
of dSg, which almost reaches the same magnitude as the 
average, indicating the dSg estimation may not be robust 
at that location. 

Another factor that also contributes to the uncertainties is 
the unknown pressure change (dP). Simultaneous 
inversion for both pressure changes and saturation 
changes is quite challenging without shear wave data. In 
this example as pressure is well maintained at BC10 O-
North, we assume that the saturation changes are the 
dominant contributors for the 4D signal and pressure 
effect is secondary. If significant pressure changes are 
present in the surveillance data, we can add dP from 
reservoir simulation as one of the inputs to adjust the 
pressure impact.  

Conclusions and discussion 

A ML based agile workflow using multi-attributes of 4D 
seismic for simultaneous inversion of dSw and dSg is 
designed and tested to fill the gaps between qualitative 
interpretation of 4D attribute maps and 4D inversion of 
seismic wiggles and to deliver a solution in a very quick 
time. A good prediction of saturation changes using 
synthetic data is demonstrated, with a slightly narrower 
uncertainty for dSg than for dSw as the 4D seismic 
amplitude change is more sensitive to dSg. We also 
applied this workflow to the real dataset (BC10 O-North) 
to estimate water/gas saturation changes from a 
combination of multi-4D attributes and the static 
properties from the reservoir model. 

One of the major uncertainties for simultaneous inversion 
of reservoir property changes comes from the non-
uniqueness, meaning multiple combinations of inversion 
results may lead to the same 4D response. Thus, a good 
starting point with relevant training datasets is essential 
for a satisfactory convergence and robust prediction. Here 
we use physics based synthetic data with reservoir model 
simulation, rock physics model and real seismic well tied 
wavelet, to construct a reasonable framework for training. 
We also accessed the robustness of prediction by running 
the workflow multiple times. The mean average and the 
standard deviation of the predictions can be used for 
uncertainty analysis. Additionally, if multiple reservoir 
models with different static parameters settings are 
available, the sensitivity of the inversion can be accessed 
through a similar strategy: repeat the workflow with 
different static models and analyze the variance of the 
predictions. The estimated saturation changes and their 
uncertainties can then be used to provide key geophysical 

input to timely analyze injection efficiency, update the 
reservoir model, and support decisions on the water flood 
optimization. The efficiency advantage is more substantial 
for multiple repeated 4D seismic surveys. 
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Figure 1:  a) synthetic dSw map; b) synthetic SPADiff map; c) synthetic dRMS map; d) synthetic dSg map; e) synthetic SNADiff map; f) 
synthetic dSNA map. Gate used to calculate the 4D attribute map is from reservoir top to reservoir bottom. 

 

 

Figure 2:  a) synthetic dSw map; b) predicted dSw map; c) difference of dSw map between predicted and the ground truth; d) synthetic dSg 
map; e) predicted dSg map; f) difference of dSg map between predicted and the ground truth. 
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Figure 3:  a) Real dRMS map; b) real SPADiff map; c) real dSNA map; d) real SNADiff map. Gate used to calculate the 4D attributes for real 
data is the same as applied in the synthetic data. 

 

 

Figure 4:  a) the mean average of predicted dSw maps from the 20 runs; b) the mean average of predicted dSg maps from the 20 runs; c) 
the standard deviation of dSw maps from the 20 runs; d) the standard deviation of dSg maps from the 20 runs. 

 


